.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � � �

Let $H(\mathbb{C}) = \{f : \mathbb{C} \to \mathbb{C} | f \text{ analytic}\} = \text{the set of all entire functions } f : \mathbb{C} \to \mathbb{C}.$

< E > < E >

э

Let $H(\mathbb{C}) = \{f : \mathbb{C} \to \mathbb{C} | f \text{ analytic}\} = \text{the set of all entire functions } f : \mathbb{C} \to \mathbb{C}.$

Convergence: $\backslash f_n \to f$ in $H(\mathbb{C})$ " means $\backslash f_n \to f$ uniformly on compact subsets of \mathbb{C} ."

A B M A B M

Let $H(\mathbb{C}) = \{f : \mathbb{C} \to \mathbb{C} | f \text{ analytic}\} = \text{the set of all entire functions } f : \mathbb{C} \to \mathbb{C}.$

Convergence: $\backslash f_n \to f$ in $H(\mathbb{C})$ " means $\backslash f_n \to f$ uniformly on compact subsets of \mathbb{C} ."

• Birkho (1929): There is a function $f \in H(\mathbb{C})$ so that $\{f(z), f(z+1), f(z+2), f(z+3) \dots\}$ is dense in $H(\mathbb{C})$.

Let $H(\mathbb{C}) = \{f : \mathbb{C} \to \mathbb{C} | f \text{ analytic}\} = \text{the set of all entire functions } f : \mathbb{C} \to \mathbb{C}.$

Convergence: $\backslash f_n \to f$ in $H(\mathbb{C})$ " means $\backslash f_n \to f$ uniformly on compact subsets of \mathbb{C} ."

- Birkho (1929): There is a function $f \in H(\mathbb{C})$ so that $\{f(z), f(z+1), f(z+2), f(z+3) \dots\}$ is dense in $H(\mathbb{C})$.
- G. R. MacLane (1952): There is a function $f \in H(\mathbb{C})$ so that $\{f(z), f'(z), f''(z), f'''(z) \dots\}$ is dense in $H(\mathbb{C})$.

Let $H(\mathbb{C}) = \{f : \mathbb{C} \to \mathbb{C} | f \text{ analytic}\} = \text{the set of all entire functions } f : \mathbb{C} \to \mathbb{C}.$

Convergence: $\backslash f_n \to f$ in $H(\mathbb{C})$ " means $\backslash f_n \to f$ uniformly on compact subsets of \mathbb{C} ."

- Birkho (1929): There is a function $f \in H(\mathbb{C})$ so that $\{f(z), f(z+1), f(z+2), f(z+3) \dots\}$ is dense in $H(\mathbb{C})$.
- G. R. MacLane (1952): There is a function $f \in H(\mathbb{C})$ so that $\{f(z), f'(z), f''(z), f'''(z) \dots\}$ is dense in $H(\mathbb{C})$.

Let $p \ge 1$, and $B : \ell^p \to \ell^p$ be the unilateral backward shift de ned by $B(a_0, a_1, a_2, \ldots) = (a_1, a_2, a_3, \ldots)$.

• Rolewicz (1969): If $t \in (1, \infty)$, then there exists a vector x in ℓ^p so that $\{x, (tB)x, (tB)^2x, (tB)^3x, \ldots\}$ is dense in ℓ^p .

Hypercyclicity Criterion

Let X be a separable, in nite-dimensional Banach space over \mathbb{C} , and $B(X) = \{T : X \to X | T \text{ is bounded and linear} \}.$

Let X be a separable, in nite-dimensional Banach space over \mathbb{C} , and $B(X) = \{T : X \to X | T \text{ is bounded and linear} \}.$

De nition. A bounded linear operator T in B(X) is *hypercyclic* if there is a vector x whose orbit $orb(T, x) = \{x, Tx, \overline{T^2x, T^3x, ...}\}$ is dense in X. Such a vector x is called a *hypercyclic vector*.

Let X be a separable, in nite-dimensional Banach space over \mathbb{C} , and $B(X) = \{T : X \to X | T \text{ is bounded and linear} \}.$

De nition. A bounded linear operator T in B(X) is *hypercyclic* if there is a vector x whose orbit $orb(T, x) = \{x, Tx, \overline{T^2x}, \overline{T^3x}, \ldots\}$ is dense in X. Such a vector x is called a *hypercyclic vector*.

Kitai (1982), Gethner and Shapiro (1987): T : X → X is hypercyclic if there is a dense set D of X and T has a right inverse S so that Tⁿx → 0 and Sⁿx → 0 for each vector x ∈ D.

 $\overline{\text{orb}(T, x)} = \overline{\{x, Tx, T^2x, T^3x, \ldots\}}$ = the smallest closed invariant subset containing x.

 $\overline{\text{orb}(T,x)} = \overline{\{x, Tx, T^2x, T^3x, \ldots\}}$ = the smallest closed invariant subset containing x.

 $\overline{\text{span orb}(T, x)} = \overline{\{p(T)x : p \text{ is a polynomial}\}} = \text{the smallest}$ closed invariant subspace containing x.

 $\overline{\text{orb}(T,x)} = \overline{\{x, Tx, T^2x, T^3x, \ldots\}}$ = the smallest closed invariant subset containing x.

 $\overline{\text{span orb}(T, x)} = \overline{\{p(T)x : p \text{ is a polynomial}\}} = \text{the smallest}$ closed invariant subspace containing x.

Invariant Subspace Problem (1920s, still open today): Must every bounded linear operator $T : H \rightarrow H$ on an in nite dimensional separable Hilbert space H have a nontrivial invariant subspace?

 $\overline{\operatorname{orb}(T, x)} = \overline{\{x, Tx, T^2x, T^3x, \ldots\}}$ = the smallest closed invariant subset containing x.

 $\overline{\text{span orb}(T, x)} = \overline{\{p(T)x : p \text{ is a polynomial}\}} = \text{the smallest}$ closed invariant subspace containing x.

Invariant Subspace Problem (1920s, still open today): Must every bounded linear operator $T : H \rightarrow H$ on an in nite dimensional separable Hilbert space H have a nontrivial invariant subspace?

• En o (1987): Not if the space is ℓ^1 . That is, there is an operator T on ℓ^1 for which every nonzero vector x has the property that span orb $(T, x) = \ell^1$.

 $\overline{\text{orb}(T,x)} = \overline{\{x, Tx, T^2x, T^3x, \ldots\}}$ = the smallest closed invariant subset containing x.

 $\overline{\text{span orb}(T, x)} = \overline{\{p(T)x : p \text{ is a polynomial}\}} = \text{the smallest}$ closed invariant subspace containing *x*.

Invariant Subspace Problem (1920s, still open today): Must every bounded linear operator $T : H \rightarrow H$ on an in nite dimensional separable Hilbert space H have a nontrivial invariant subspace?

- En o (1987): Not if the space is ℓ^1 . That is, there is an operator T on ℓ^1 for which every nonzero vector x has the property that span orb $(T, x) = \ell^1$.
- Read (1989): There is an operator T on ℓ^1 with no nontrivial closed invariant subset. That is, every nonzero vector x has the property that $\overline{\operatorname{orb}(T, x)} = \ell^1$.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

If X

If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take $X = \mathbb{C}^n$. The adjoint $T^* : \mathbb{C}^n \to \mathbb{C}^n$ has an eigenvalue $\alpha \in \mathbb{C}$. Suppose $T^*y = \alpha y$.

A B + A B +

If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take $X = \mathbb{C}^n$. The adjoint $T^* : \mathbb{C}^n \to \mathbb{C}^n$ has an eigenvalue $\alpha \in \mathbb{C}$. Suppose $T^*y = \alpha y$. Then for any vector $x \in \mathbb{C}^n$,

$$= < X, T^{*n} y> = < X, \alpha^n y> = \alpha^n < X, y>,$$

which cannot be dense in \mathbb{C} . \Box

If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take $X = \mathbb{C}^n$. The adjoint $T^* : \mathbb{C}^n \to \mathbb{C}^n$ has an eigenvalue $\alpha \in \mathbb{C}$. Suppose $T^*y = \alpha y$. Then for any vector $x \in \mathbb{C}^n$,

$$= < X, T^{*n} y> = < X, \alpha^n y> = \alpha^n < X, y>,$$

which cannot be dense in \mathbb{C} . \Box

Back to the case when X is in nite dimensional.

If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take $X = \mathbb{C}^n$. The adjoint $T^* : \mathbb{C}^n \to \mathbb{C}^n$ has an eigenvalue $\alpha \in \mathbb{C}$. Suppose $T^*y = \alpha y$. Then for any vector $x \in \mathbb{C}^n$,

$$= < X, T^{*n} y> = < X, \alpha^n y> = \alpha^n < X, y>,$$

which cannot be dense in \mathbb{C} . \Box

Back to the case when X is in nite dimensional.

If $F : X \to X$ has nite rank (that is, dim ran $F < \infty$), then I + F is not hypercyclic.

If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take $X = \mathbb{C}^n$. The adjoint $T^* : \mathbb{C}^n \to \mathbb{C}^n$ has an eigenvalue $\alpha \in \mathbb{C}$. Suppose $T^*y = \alpha y$. Then for any vector $x \in \mathbb{C}^n$,

$$= < X, T^{*n} y> = < X, \alpha^n y> = \alpha^n < X, y>,$$

which cannot be dense in \mathbb{C} . \Box

Back to the case when X is in nite dimensional.

If $F: X \to X$ has nite rank (that is, dim ran $F < \infty$), then I + F is not hypercyclic.

If $T : X \to X$ is compact, then T is not hypercyclic.

If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take $X = \mathbb{C}^n$. The adjoint $T^* : \mathbb{C}^n \to \mathbb{C}^n$ has an eigenvalue $\alpha \in \mathbb{C}$. Suppose $T^*y = \alpha y$. Then for any vector $x \in \mathbb{C}^n$,

$$= < X, T^{*n} y> = < X, \alpha^n y> = \alpha^n < X, y>,$$

which cannot be dense in \mathbb{C} . \Box

Back to the case when X is in nite dimensional.

If $F : X \to X$ has nite rank (that is, dim ran $F < \infty$), then I + F is not hypercyclic.

If $T : X \to X$ is compact, then T is not hypercyclic.

If X is a Hilbert space, no normal operator is hypercyclic.

Suppose $\{x_j : j \ge 1\}$ is a countable dense subset of *X*, and *x* is a vector in *X*. For *x* to be a hypercyclic vector, the following must hold:

For all x_j and for all $\epsilon > 0$, there is a integer *n* such that $||T^n x - x_j|| < \epsilon$;

Suppose $\{x_j : j \ge 1\}$ is a countable dense subset of *X*, and *x* is a vector in *X*. For *x* to be a hypercyclic vector, the following must hold:

For all x_j and for all $\epsilon > 0$, there is a integer n such that $||T^n x - x_j|| < \epsilon$;

Equivalently, $x \in T^{-n}B(x_j, \epsilon)$.

Suppose $\{x_j : j \ge 1\}$ is a countable dense subset of *X*, and *x* is a vector in *X*. For *x* to be a hypercyclic vector, the following must hold:

For all x_j and for all $\epsilon > 0$, there is a integer n such that $||T^n x - x_j|| < \epsilon$;

Equivalently, $x \in T^{-n}B(x_j, \epsilon)$.

Let $\mathcal{HC}(T) = \{x \in X | x \text{ is a hypercyclic vector for } T\}.$

Suppose $\{x_j : j \ge 1\}$ is a countable dense subset of *X*, and *x* is a vector in *X*. For *x* to be a hypercyclic vector, the following must hold:

For all x_j and for all $\epsilon > 0$, there is a integer n such that $||T^n x - x_j|| < \epsilon$;

Equivalently, $x \in T^{-n}B(x_j, \epsilon)$.

Let $\mathcal{HC}(T) = \rangle$).

A Basic Zero-One Law for Hypercyclic Vectors

• Kitai (1982): For any operator T in B(X), either $\mathcal{HC}(T)$ is either ϕ or a dense G set.

< ∃ >

A Basic Zero-One Law for Hypercyclic Vectors

• Kitai (1982): For any operator T in B(X), either $\mathcal{HC}(T)$ is either ϕ or a dense G set.

Baire Category Theorem \implies

If $\{T_n : X \to X | n \ge 1\}$ is a countable collection of hypercyclic operators, then their set of *common hypercyclic vectors*

 $\bigcap_{n=1}^{\infty} \mathcal{HC}(T_n)$

is a dense G set.

A Basic Zero-One Law for Hypercyclic Vectors

• Kitai (1982): For any operator T in B(X), either $\mathcal{HC}(T)$ is either ϕ or a dense G set.

Baire Category Theorem \Rightarrow

If $\{T_n : X \to X | n \ge 1\}$ is a countable collection of hypercyclic operators, then their set of *common hypercyclic vectors*

$$\bigcap_{n=1}^{\infty} \mathcal{HC}(T_n)$$

is a dense G set.

• Salas (1999): If *B* is the unilateral backward shift, is the set of common hypercyclic vectors

$$\bigcap_{t>1} \mathcal{HC}(tB) \neq \phi?$$

Existence of a G_{δ} Set of Common Hypercyclic Vectors

 Abakumov & Gordon (2003): ∩ *HC(tB)* = the set of common hypercyclic vectors for *tB* is a dense G set.

Existence of a G_{δ} Set of Common Hypercyclic Vectors

- Abakumov & Gordon (2003): ∩ *HC(tB)* = the set of common hypercyclic vectors for *tB* is a dense G set.
- Costakis & Sambarino (2004): Reproved the above result with a simpler proof by introducing a su cient condition for common hypercyclicity, and showed other applications.

Existence of a G_{δ} Set of Common Hypercyclic Vectors

- Abakumov & Gordon (2003): ∩ *HC(tB)* = the set of common hypercyclic vectors for *tB* is a dense G set.
- Costakis & Sambarino (2004): Reproved the above result with

 $T: \ell^p \to \ell^p$ is said to be a *unilateral weighted backward shift* if there is a bounded positive weight sequence $\{w_j: j \ge 1\}$ such that

 $T(a_0, a_1, a_2, \ldots) = (w_1a_1, w_2a_2, w_3a_3, \ldots).$

 $T: \ell^p \to \ell^p$ is said to be a <u>unilateral weighted backward shift</u> if there is a bounded positive weight sequence $\{w_j: j \ge 1\}$ such that

$$T(a_0, a_1, a_2, \ldots) = (w_1a_1, w_2a_2, w_3a_3, \ldots).$$

 Salas (1995): A unilateral weighted backward shift *T* is hypercyclic if and only if sup{*w*₁*w*₂ ··· *w_n* : *n* ≥ 1} = ∞. $T: \ell^p \to \ell^p$ is said to be a <u>unilateral weighted backward shift</u> if there is a bounded positive weight sequence $\{w_j: j \ge 1\}$ such that

$$T(a_0, a_1, a_2, \ldots) = (w_1a_1, w_2a_2, w_3a_3, \ldots).$$

- Salas (1995): A unilateral weighted backward shift *T* is hypercyclic if and only if sup{*w*₁*w*₂ ··· *w_n* : *n* ≥ 1} = ∞.
- Grosse-Erdmann (2000): Generalizations to Frechet spaces.

 $T: \ell^p \to \ell^p$ is a *bilateral weighted backward shift* if there is a bounded positive weight sequence $\{w_j : j \in \mathbb{Z}\}$ such that

$$T(\ldots, a_{-1}, \overbrace{a_0}^{\text{zeroth}}, a_1, \ldots) = (\ldots, w_{-1}a_{-1}, w_0a_0, \overbrace{w_1a_1}^{\text{zeroth}}, w_2a_2, \ldots).$$

A B > A B >

 $T: \ell^p \to \ell^p$ is a *bilateral weighted backward shift* if there is a bounded positive weight sequence $\{w_j : j \in \mathbb{Z}\}$ such that

$$T(\ldots, a_{-1}, \overbrace{a_0}^{\text{zeroth}}, a_1, \ldots) = (\ldots, w_{-1}a_{-1}, w_0a_0, \overbrace{w_1a_1}^{\text{zeroth}}, w_2a_2, \ldots).$$

 Salas (1995): A bilateral weighted shift *T* is hypercyclic if and only if for any *ε* > 0, and *q* ∈ N, there is an arbitrarily large *n* such that whenever |*k*| ≤ *q*,

$$\prod_{j=1}^{n} W_{k+j} > \frac{1}{\epsilon} \quad \text{and} \quad \prod_{j=0}^{n-1} W_{k-j} < \epsilon.$$

• with Sanders (2009): Between any two hypercyclic unilateral weighted backward shifts, there is a path of such operators with a dense G set of common hypercyclic vectors. Also, there is a path of such operators with no common hypercyclic vectors.

- with Sanders (2009): Between any two hypercyclic unilateral weighted backward shifts, there is a path of such operators with a dense G set of common hypercyclic vectors. Also, there is a path of such operators with no common hypercyclic vectors.
- Corollary: The hypercyclic unilateral weighted backward shifts form a path-connected subset in the operator algebra.

- with Sanders (2009): Between any two hypercyclic unilateral weighted backward shifts, there is a path of such operators with a dense G set of common hypercyclic vectors. Also, there is a path of such operators with no common hypercyclic vectors.
- Corollary: The hypercyclic unilateral weighted backward shifts form a path-connected subset in the operator algebra.
- The same holds true for bilateral weighted shifts.

- with Sanders (2009): Between any two hypercyclic unilateral weighted backward shifts, there is a path of such operators with a dense G set of common hypercyclic vectors. Also, there is a path of such operators with no common hypercyclic vectors.
- Corollary: The hypercyclic unilateral weighted backward shifts form a path-connected subset in the operator algebra.
- The same holds true for bilateral weighted shifts.

Natural Question: Can we have \a lot" of operators in a path and yet their common hypercyclic vectors still form a dense G subset? What do we mean by \a lot"?

Existence of Hypercyclic Operators

 Ansari (1997) : For every separable, in nite dimensional Banach space X, there is a hypercyclic operator T in B(X).

Existence of Hypercyclic Operators

 Ansari (1997) : For every separable, in nite dimensional Banach space X, there is a hypercyclic operator T in B(X).

De nition. A vector $x \in X$ is said to be a <u>periodic point</u> of an operator T in B(X) if there is a positive integer n such that $T^n x = x$.

De nition. An operator on X is said to be <u>chaotic</u> if and only if it is hypercyclic and has a dense set of periodic points.

 Ansari (1997) : For every separable, in nite dimensional Banach space X, there is a hypercyclic operator T in B(X).

De nition. A vector $x \in X$ is said to be a <u>periodic point</u> of an operator T in B(X) if there is a positive integer n such that $T^n x = x$.

De nition. An operator on X is said to be <u>chaotic</u> if and only if it is hypercyclic and has a dense set of periodic points.

 Bonet & Mart nez-Gimenez & Peris (2001): There is a separable, in nite dimensional Banach space which admits no chaotic operator.

A Zero-One Law for Chaotic Operators

SOT = Strong Operator Topology of the operator algebra B(X).

• (2002): For a separable, in nite dimensional Hilbert space *H*, the hypercyclic operators on *H* are SOT-dense in *B*(*H*).

A Zero-One Law for Chaotic Operators

SOT = Strong Operator Topology of the operator algebra B(X).

- (2002): For a separable, in nite dimensional Hilbert space *H*, the hypercyclic operators on *H* are SOT-dense in *B*(*H*).
- with Bes (2003): The set of chaotic operators on a separable, in nite dimensional Banach space X is either empty or SOT-dense in B(X).

A Zero-One Law for Chaotic Operators

SOT = Strong Operator Topology of the operator algebra B(X).

- (2002): For a separable, in nite dimensional Hilbert space *H*, the hypercyclic operators on *H* are SOT-dense in *B*(*H*).
- with Bes (2003): The set of chaotic operators on a separable, in nite dimensional Banach space X is either empty or SOT-dense in B(X).

Indeed, if $T \in B(X)$ is hypercyclic, then its conjugate class, or similarity orbit, $\{A^{-1}TA : A \text{ invertible on } X\}$ is SOT-dense in B(X).

A Double Density Theorem

Let *H* be separable, in nite dimensional Hilbert space over \mathbb{C} .

• with Sanders (2011): There is a path of chaotic operators in *B*(*H*) that is SOT-dense in *B*(*H*), and each operator on the path shares the exact same set *G* of common hypercyclic vectors.

A Double Density Theorem

Let *H* be separable, in nite dimensional Hilbert space over \mathbb{C} .

- with Sanders (2011): There is a path of chaotic operators in *B*(*H*) that is SOT-dense in *B*(*H*), and each operator on the path shares the exact same set *G* of common hypercyclic vectors.
- Corollary: The path can be taken so that each operator along the path satis es the hypercyclicity criterion.

A Double Density Theorem

Let *H* be separable, in nite dimensional Hilbert space over \mathbb{C} .

- with Sanders (2011): There is a path of chaotic operators in *B*(*H*) that is SOT-dense in *B*(*H*), and each operator on the path shares the exact same set *G* of common hypercyclic vectors.
- Corollary: The path can be taken so that each operator along the path satis es the hypercyclicity criterion.
- Corollary: The hypercyclic operators in *B*(*H*) are SOT-connected.
- Corollary: The hypercyclic operators T in B(H) with $\mathcal{G} \subset \mathcal{HC}(T)$ are SOT-connected.

For an operator $T : X \to X$ on a Banach space X, we let $S(T) = \{A^{-1}TA | A \text{ invertible}\}\$ be the similarity orbit of T.

A B > A B >

For an operator $T : X \to X$ on a Banach space X, we let $S(T) = \{A^{-1}TA | A \text{ invertible}\}\$ be the similarity orbit of T.

 with Sanders (2011): S(T) contains a path of operators which is SOT-dense in B(X) and for which the set of common hypercyclic vectors for the whole path is a dense G set.

For an operator $T : X \to X$ on a Banach space X, we let $S(T) = \{A^{-1}TA | A \text{ invertible}\}\$ be the similarity orbit of T.

 with Sanders (2011): S(T) contains a path of operators which is SOT-dense in B(X) and for which the set of common hypercyclic vectors for the whole path is a dense G set.

Observations of some zero-one phenomenon:

For an operator $T : X \to X$ on a Banach space X, we let $S(T) = \{A^{-1}TA | A \text{ invertible}\}\$ be the similarity orbit of T.

• with Sanders (2011): S(T) contains a path of operators which is SOT-dense in B(X) and for which the set of common hypercyclic vectors for the whole path is a dense G set.

Observations of some zero-one phenomenon:

(1) If $\mathcal{HC}(T) = X \setminus \{0\}$, the set of common hypercyclic vectors for $\mathcal{S}(T)$ is also $X \setminus \{0\}$.

(2) If $\mathcal{HC}(T) \neq X \setminus \{0\}$, the set of common hypercyclic vectors for $\mathcal{S}(T)$ is empty.

For an operator T on a Hilbert space H, we let $\mathcal{U}(T) = \{ \infty \ \{ \in \in \cup \in \infty \ \in \infty \ \in \in \in \} \}$

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ ・ 三 ・ のへで

For an operator T on a Hilbert space H, we let $U(T) = \{U^{-1}TU : U \text{ unitary}\}$, the unitary orbit of T.

{unitary operators on H} path connected $\implies U(T)$ path connected.

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

For an operator T on a Hilbert space H, we let $U(T) = \{U^{-1}TU : U \text{ unitary}\}$, the unitary orbit of T.

{unitary operators on H} path connected $\implies U(T)$ path connected.

Every operator in $\mathcal{U}(T)$ has the same norm as T. So $\mathcal{U}(T)$ does not contain a path that is SOT-dense in B(H).

For an operator T on a Hilbert space H, we let $U(T) = \{U^{-1}TU : U \text{ unitary}\}$, the unitary orbit of T.

{unitary operators on H} path connected $\implies U(T)$ path connected.

Every operator in $\mathcal{U}(T)$ has the same norm as T. So $\mathcal{U}(T)$ does not contain a path that is SOT-dense in B(H).

• with Sanders (2012): If $T \in B(H)$ be hypercyclic, then $\mathcal{U}(T)$ contains a path \mathcal{P} of operators so that $\overline{\mathcal{P}}^{SOT}$ contains $\mathcal{U}(T)$ and the common hypercyclic vectors for \mathcal{P} is a dense G set.

 Bourdon & Feldman (2003): If an orbit orb(T, x) is somewhere dense in a Banach space X then the orbit orb(T, x) is everywhere dense.

- Bourdon & Feldman (2003): If an orbit orb(T, x) is somewhere dense in a Banach space X then the orbit orb(T, x) is everywhere dense.
- with Seceleanu (2012): Let T : ℓ^p → ℓ^p be a unilateral weighted backward shift. The following are equivalent:
- (A) T is hypercyclic.

- Bourdon & Feldman (2003): If an orbit orb(T, x) is somewhere dense in a Banach space X then the orbit orb(T, x) is everywhere dense.
- with Seceleanu (2012): Let T : ℓ^p → ℓ^p be a unilateral weighted backward shift. The following are equivalent:
- (A) T is hypercyclic.
- (B) There is a vector whose orbit has a nonzero limit point.

- Bourdon & Feldman (2003): If an orbit orb(T, x) is somewhere dense in a Banach space X then the orbit orb(T, x) is everywhere dense.
- with Seceleanu (2012): Let T : ℓ^p → ℓ^p be a unilateral weighted backward shift. The following are equivalent:
- (A) T is hypercyclic.
- (B) There is a vector whose orbit has a nonzero limit point.
- (C) There is a vector whose orbit has a nonzero weak limit point.

- Bourdon & Feldman (2003): If an orbit orb(T, x) is somewhere dense in a Banach space X then the orbit orb(T, x) is everywhere dense.
- with Seceleanu (2012): Let T : ℓ^p → ℓ^p be a unilateral weighted backward shift. The following are equivalent:
- (A) T is hypercyclic.
- (B) There is a vector whose orbit has a nonzero limit point.
- (C) There is a vector whose orbit has a nonzero weak limit point.
- (D) There is a vector whose orbit has in nitely many members contained in an open ball whose closure avoids the origin.

- Bourdon & Feldman (2003): If an orbit orb(T, x) is somewhere dense in a Banach space X then the orbit orb(T, x) is everywhere dense.
- with Seceleanu (2012): Let T : ℓ^p → ℓ^p be a unilateral weighted backward shift. The following are equivalent:
- (A) T is hypercyclic.
- (B) There is a vector whose orbit has a nonzero limit point.
- (C) There is a vector whose orbit has a nonzero weak limit point. (D)

- Bourdon & Feldman (2003): If an orbit orb(T, x) is somewhere dense in a Banach space X then the orbit orb(T, x) is everywhere dense.
- with Seceleanu (2012): Let T : ℓ^p → ℓ^p be a unilateral weighted backward shift. The following are equivalent:
- (A) T is hypercyclic.
- (B) There is a vector whose orbit has a nonzero limit point.
- (C) There is a vector whose orbit has a nonzero weak limit point.
- (D) There is a vector whose orbit has in nitely many members contained in an open ball whose closure avoids the origin.

Corollary: T is not hypercyclic i every $orb(T, x) \cup \{0\}$ is closed. Remark: (A), (B), (D) are equivalent for bilateral weighted shifts.

- Bourdon & Feldman (2003): If an orbit orb(T, x) is somewhere dense in a Banach space X then the orbit orb(T, x) is everywhere dense.
- with Seceleanu (2012): Let T : ℓ^p → ℓ^p be a unilateral weighted backward shift. The following are equivalent:
- (A) T is hypercyclic.
- (B) There is a vector whose orbit has a nonzero limit point.
- (C) There is a vector whose orbit has a nonzero weak limit point.
- (D) There is a vector whose orbit has in nitely many members contained in an open ball whose closure avoids the origin.

Corollary: T is not hypercyclic i every $orb(T, x) \cup \{0\}$ is closed. Remark: (A), (B), (D) are equivalent for bilateral weighted shifts.

 with Sanders (2004): A unilateral weighted backward shift is hypercyclic if and only if it is weakly hypercyclic. But, there is a bilateral weighted shift that is weakly hypercyclic but not hypercyclic.

A Remark on Theorem

If orb(T, x) has a nonzero limit point, we can only conclude T is hypercyclic but we cannot conclude that x is a hypercyclic vector, and in fact not even a cyclic vector.

A vector x is a cyclic vector for T, if span orb(T, x) is dense in X.

If orb(T, x) has a nonzero limit point, we can only conclude T is hypercyclic but we cannot conclude that x is a hypercyclic vector, and in fact not even a cyclic vector.

A vector x is a <u>cyclic vector</u> for T, if span orb(T, x) is dense in X. Let (e_n) be the canonical basis of ℓ^p .

• with Seceleanu (preprint, 2013): The vector *x* is a cyclic vector for *T*, if

(1) the weight $(w_j)_{i=1}^{\infty}$ of T is bounded below, and

(2) $\operatorname{orb}(T, x)$ has a nonzero limit point f given by $f = a_0 e_0 + \cdots + a_n e_n$ (nite sum) for some scalars a_j .

If orb(T, x) has a nonzero limit point, we can only conclude T is hypercyclic but we cannot conclude that x is a hypercyclic vector, and in fact not even a cyclic vector.

A vector x is a <u>cyclic vector</u> for T, if span orb(T, x) is dense in X. Let (e_n) be the canonical basis of ℓ^p .

• with Seceleanu (preprint, 2013): The vector *x* is a cyclic vector for *T*, if

(1) the weight $(w_j)_{i=1}^{\infty}$ of T is bounded below, and

(2) $\operatorname{orb}(T, x)$ has a nonzero limit point f given by $f = a_0 e_0 + \cdots + a_n e_n$ (nite sum) for some scalars a_j .

There are examples to show both (1) and (2) are needed for x to be a cyclic vector.

Proof of \backslash (B) \implies (A)"

Suppose there exist a vector $x = (x_0, x_1, x_2, ...) \in \ell^p$ and a non-zero vector $f = (f_0, f_1, f_2, ...) \in \ell^p$ such that f is a limit point of the orbit Orb(T, x).

Proof of \backslash (B) \implies (A)"

Suppose there exist a vector $x = (x_0, x_1, x_2, ...) \in \ell^p$ and a non-zero vector $f = (f_0, f_1, f_2, ...) \in \ell^p$ such that f is a limit point of the orbit Orb(T, x).

Since $f_j \neq 0$ for some $j \ge 0$, we assume without loss of generality that $f_0 \neq 0$. Hence there exist an increasing sequence $\{n_k : k \ge 1\} \subset \mathbb{N}$ and an integer N > 0 such that

$$||T^{n_k}x-f|| < \frac{1}{2^k} < \frac{|f_0|}{2},$$

for all $k \ge N$. Then

$$T^{n_k} x = T^{n_k}(x_0, x_1, x_2, \ldots) = (W_1 \cdots W_{n_k} x_{n_k}, \ldots).$$

Proof of $\backslash(B) \implies (A)''$

Suppose there exist a vector $x = (x_0, x_1, x_2, ...) \in \ell^p$ and a non-zero vector $f = (f_0, f_1, f_2, ...) \in \ell^p$ such that f is a limit point of the orbit Orb(T, x).

Since $f_j \neq 0$ for some $j \ge 0$, we assume without loss of generality that $f_0 \neq 0$. Hence there exist an increasing sequence $\{n_k : k \ge 1\} \subset \mathbb{N}$ and an integer N > 0 such that

$$||T^{n_k}x-f|| < \frac{1}{2^k} < \frac{|f_0|}{2},$$

for all $k \ge N$. Then

$$T^{n_k} X = T^{n_k}(X_0, X_1, X_2, \ldots) = (W_1 \cdots W_{n_k} X_{n_k}, \ldots).$$

Hence $||T^{n_k}x - f|| \ge |w_1 \cdots w_{n_k} x_{n_k} - f_0|$. So there exists a sequence $\{n_k : k \ge 1\}$ such that

$$|W_1 \cdots W_{n_k} X_{n_k} - f_0| < |f_0|/2,$$

for all $k \ge N$.

$(B) \implies (A)$ " Completed

Thus $|f_0|/2 < |w_1 \cdots w_{n_k} x_{n_k}|$ and so $\frac{|f_0|}{2(w_1 \cdots w_{n_k})} < |x_{n_k}|$ for all $k \ge N$. Hence we get that

$$rac{|f_0|^p}{2^p (w_1 \cdots w_{n_k})^p} < |x_{n_k}|^p$$
, for all $k \ge N$.

Now since $x \in \ell^p$ we have

$$\frac{|f_0|^p}{2^p}\sum_{k=N}^{\infty}\frac{1}{(W_1\cdots W_{n_k})^p}\leq \sum_{k=N}^{\infty}|X_{n_k}|^p\leq ||X||^p<\infty.$$

$(B) \implies (A)$ " Completed

Thus $|f_0|/2 < |w_1 \cdots w_{n_k} x_{n_k}|$ and so $\frac{|f_0|}{2(w_1 \cdots w_{n_k})} < |x_{n_k}|$ for all $k \ge N$. Hence we get that

$$rac{|f_0|^p}{2^p(w_1\cdots w_{n_k})^p} < |x_{n_k}|^p$$
, for all $k \ge N$.

Now since $x \in \ell^p$ we have

$$\frac{|f_0|^p}{2^p} \sum_{k=N}^{\infty} \frac{1}{(W_1 \cdots W_{n_k})^p} \leq \sum_{k=N}^{\infty} |X_{n_k}|^p \leq ||X||^p < \infty.$$

It follows that $\frac{1}{(w_1 \dots w_{n_k})^p} \to 0$. That is, there exists an increasing sequence $\{n_k\}$ such that $w_1 \dots w_{n_k} \to \infty$ as $k \to \infty$.

$(B) \implies (A)$ " Completed

Thus $|f_0|/2 < |w_1 \cdots w_{n_k} x_{n_k}|$ and so $\frac{|f_0|}{2(w_1 \cdots w_{n_k})} < |x_{n_k}|$ for all $k \ge N$. Hence we get that

$$rac{|f_0|^p}{2^p(w_1\cdots w_{n_k})^p} < |x_{n_k}|^p$$
, for all $k\geq N$.

Now since $x \in \ell^p$ we have

$$\frac{|f_0|^p}{2^p} \sum_{k=N}^{\infty}$$

Recall: A Zero-One Law for Orbital Limit Points

- with Seceleanu (2012): Let T : ℓ^p → ℓ^p be a unilateral weighted backward shift. The following are equivalent:
- (A) T is hypercyclic.
- (B) There is a vector whose orbit has a nonzero limit point.
- (C) There is a vector whose orbit has a nonzero weak limit point.
- (D) There is a vector whose orbit has in nitely many members contained in an open ball whose closure avoids the origin.

Proof of $(C) \implies (B)$ "

Let $x = (x_0, x_1, x_2, ...) \in \ell^p$ be a vector whose Orb(T, x) has $f = (f_0, f_1, f_2, ...) \in \ell^p$ as a non-zero weak limit point, with f_k

Proof of $(C) \implies (B)$ "

Let $x = (x_0, x_1, x_2, ...) \in \ell^p$ be a vector whose Orb(T, x) has $f = (f_0, f_1, f_2, ...) \in \ell^p$ as a non-zero weak limit point, with $f_k \neq 0$.

Considering the weakly open sets that contain f, we get that for all $j \ge 1$ there exists an $n_j \ge 1$ such that $|\langle T^{n_j}x - f, e_k \rangle| < \frac{1}{i}$.

That is
$$|W_{k+1}\cdots W_{k+n_j}X_{k+n_j}-f_k| < \frac{1}{j}$$
, for all $j \ge 1$.

Next, we inductively pick a subsequence $\{n_{j_k}\}$ of $\{n_j\}$ as follows: 1. Let $j_1 = 1$.

2. Once we have chosen j_m we pick $j_{m+1} > j_m$ such that

$$k + n_{j_m} < n_{j_{m+1}}$$
 and $\sum_{i=j_{m+1}}^{\infty} |x_{k+n_i}|^p \le \frac{1}{j_m \cdot ||T||^{p \cdot n_{j_m}}}.$

Thus we can assume, by taking a subsequence if necessary, that

$$\{n_j\}$$
 satis es $k + n_j < n_{j+1}$ and $\sum_{i=j+1}^{\infty} |x_{k+n_i}|^p \le \frac{1}{j \cdot ||T||^{p \cdot n_j}}.$

$(C) \implies (B)$ " Continued

Let
$$y = \sum_{i=1}^{\infty} x_{k+n_i} \cdot e_{k+n_i}$$
. Clearly y is in ℓ^p , because x is.
Then $T^{n_m}y = \sum_{i=1}^{\infty} x_{k+n_i} \cdot T^{n_m}e_{k+n_i}$. But $k + n_i < n_{i+1}$ for all $i \ge 1$
and so $k + n_i < n_m$ for all $i < m$. Thus since T is a unilateral
backward shift we conclude that $T^{n_m}y = \sum_{i=m}^{\infty} x_{k+n_i} \cdot T^{n_m}e_{k+n_i}$.

æ

イロン 不聞 とくほとう ほどう

$(C) \implies (B)$ " Continued

Let $y = \sum x_{k+n_i} \cdot e_{k+n_i}$. Clearly y is in ℓ^p , because x is. Then $T^{n_m}y = \sum_{i=1}^{\infty} x_{k+n_i} \cdot T^{n_m}e_{k+n_i}$. But $k + n_i < n_{i+1}$ for all $i \ge 1$ and so $k + n_i < n_m$ for all i < m. Thus since T is a unilateral backward shift we conclude that $T^{n_m}y = \sum x_{k+n_i} \cdot T^{n_m}e_{k+n_i}$. Furthermore, since the vectors $T^{n_m}e_{k+n_i}$ and $T^{n_m}e_{k+n_i}$ have disjoint support for $i \neq j$, that is $T_{n_m} e_{k+n_i}(s) = 0$ whenever $T^{n_m}e_{k+n_i}(s) \neq 0$, we have that

$$\|T^{n_m}y - f_k e_k\| \le \|(w_{k+1} \cdots w_{k+n_m} x_{k+n_m} - f_k) \cdot e_k\| + \left\|\sum_{i=m+1}^{\infty} x_{k+n_i} \cdot T^{n_m} e_{k+n_i}\right\|$$

$(C) \implies (B)$ " Completed

Thus,

$$\|T^{n_m}y - f_k e_k\| \le \|W_{k+1} \cdots W_{k+n_m} x_{k+n_m} - f_k\| + \left[\sum_{i=m+1}^{\infty} |x_{k+n_i}|^p \cdot \|T^{n_m} e_{k+n_i}\|^p\right]^{1-p} \le \frac{1}{m} + \left[\sum_{i=m+1}^{\infty} |x_{k+n_i}|^p \cdot \|T\|^{p \cdot n_m}\right]^{1-p} \le \frac{1}{m} + \frac{1}{\sqrt[q]{m}} \to 0 \quad \text{as } m \to \infty.$$

<ロ> <同> <同> < 同> < 同>

æ

Thus,

$$\begin{aligned} \|T^{n_m}y - f_k e_k\| \\ &\leq \|W_{k+1} \cdots W_{k+n_m} X_{k+n_m} - f_k\| + \left[\sum_{i=m+1}^{\infty} |X_{k+n_i}|^p \cdot \|T^{n_m} e_{k+n_i}\|^p\right]^{1=p} \\ &\leq \frac{1}{m} + \left[\sum_{i=m+1}^{\infty} |X_{k+n_i}|^p \cdot \|T\|^{p \cdot n_m}\right]^{1=p} \leq \frac{1}{m} + \frac{1}{\sqrt[p]{m}} \to 0 \quad as \ m \to \infty. \end{aligned}$$

Thus $T^{n_m}y \to f_k e_k$ in norm as $m \to \infty$, where $f_k e_k \neq 0$ in ℓ^p , and hence Orb(T, y) has a non-zero limit point. \Box

(*) *) *) *)

Let be a region in $\mathbb C$ and $H^\infty(\)$ be the algebra of all bounded analytic functions on $\ .$

Let $A^2() = \{f : \to \mathbb{C} \mid f \text{ analytic, and } \int |f|^2 dA < \infty\}$ be the Bergman space.

If $\varphi \in H^{\infty}($), then we de ne $M' : A^2($) $\rightarrow A^2($) by $M' f = \varphi f$.

• • = • • = •

Let be a region in $\mathbb C$ and $H^\infty(\)$ be the algebra of all bounded analytic functions on $\ .$

Let $A^2() = \{f : \to \mathbb{C} \mid f \text{ analytic, and } \int |f|^2 dA < \infty\}$ be the Bergman space.

If $\varphi \in H^{\infty}(\)$, then we de ne $M_{'}: A^{2}(\) \to A^{2}(\)$ by $M_{'}f = \varphi f$.

Godefroy & Shapiro (1991): The adjoint operator
 M^{*}_i: A²() → A²() is hypercyclic if and only if φ() intersects the unit circle.

A Zero-One Law for Adjoint Multiplication Operators

Let $\varphi \in H^{\infty}(\)$ be a nonconstant function, and $M' : A^2(\) \to A^2(\)$.

with Seceleanu (2012): The following are equivalent.
(A) *M*^{*} is hypercyclic.

A Zero-One Law for Adjoint Multiplication Operators

Let $\varphi \in H^{\infty}(\)$ be a nonconstant function, and $M' : A^2(\) \to A^2(\)$.

with Seceleanu (2012): The following are equivalent.
(A) *M*^{*} is hypercyclic.

(B) M_{r}^{*} has an orbit with a nonzero limit point.

A Zero-One Law for Adjoint Multiplication Operators

Let $\varphi \in H^{\infty}(\)$ be a nonconstant function, and $M' : A^2(\) \to A^2(\)$.

with Seceleanu (2012): The following are equivalent.
(A) *M*^{*} is hypercyclic.

(B) M^* has an orbit with a nonzero limit point.

(C) *M*^{*} has an orbit which has in nitely many members contained in an open ball whose closure avoids the origin.

What about the Hardy Space?

Let
$$\mathbb{D}$$
 be the open unit disk, and let
 $H^2 = \left\{ f : \mathbb{D} \to \mathbb{D} \mid f(z) = \sum_{0}^{\infty} a_n z^n \text{ analytic and } \sum_{0}^{\infty} |a_n|^2 < \infty \right\}$
be the Hardy space.

• with Seceleanu (2012): The result for the Bergman space holds true for the Hardy space.

Let $\varphi : \mathbb{D} \to \mathbb{D}$ be an analytic map.

De ne C_r : H^2

What about the Hardy Space?

Let
$$\mathbb{D}$$
 be the open unit disk, and let
 $H^2 = \left\{ f : \mathbb{D} \to \mathbb{D} \mid f(z) = \sum_{0}^{\infty} a_n z^n \text{ analytic and } \sum_{0}^{\infty} |a_n|^2 < \infty \right\}$
be the Hardy space.

• with Seceleanu (2012): The result for the Bergman space holds true for the Hardy space.

Let $\varphi : \mathbb{D} \to \mathbb{D}$ be an analytic map.

Define $C_{'}: H^2 \to H^2$ by $C_{'}f = f \circ \varphi$.

• with Seceleanu (2012): If $\alpha > 0$ is an irrational number, and $\varphi(z) = e^{2-i} z$, then C_{i} has an orbit with the identity function $\psi(z) \equiv z$ as a nonzero limit point, but C_{i} is not hypercyclic.