K ロ X K 레 X K B X K B X X B X A Q Q Q Y

Let $H(\mathbb{C}) = \{f : \mathbb{C} \to \mathbb{C} | f \text{ analytic}\} = \text{the set of all entire}$ functions $f: \mathbb{C} \to \mathbb{C}$.

 \sim \sim

すぎわ すぎわ

э

Let $H(\mathbb{C}) = \{f : \mathbb{C} \to \mathbb{C} | f \text{ analytic}\} = \text{the set of all entire}$ functions $f : \mathbb{C} \to \mathbb{C}$.

Convergence: $\mathcal{F}_n \to f$ in $H(\mathbb{C})$ " means $\mathcal{F}_n \to f$ uniformly on compact subsets of C."

化重新 化重新分

Let $H(\mathbb{C}) = \{f : \mathbb{C} \to \mathbb{C} | f \text{ analytic}\} = \text{the set of all entire}$ functions $f : \mathbb{C} \to \mathbb{C}$.

Convergence: $\mathcal{F}_n \to f$ in $H(\mathbb{C})$ " means $\mathcal{F}_n \to f$ uniformly on compact subsets of C."

• Birkho (1929): There is a function $f \in H(\mathbb{C})$ so that ${f(z), f(z + 1), f(z + 2), f(z + 3) \ldots}$ is dense in $H(\mathbb{C})$.

→ 重 → → 重 → →

Let $H(\mathbb{C}) = \{f : \mathbb{C} \to \mathbb{C} | f \text{ analytic}\} = \text{the set of all entire}$ functions $f : \mathbb{C} \to \mathbb{C}$.

Convergence: $\mathcal{F}_n \to f$ in $H(\mathbb{C})$ " means $\mathcal{F}_n \to f$ uniformly on compact subsets of C."

- Birkho (1929): There is a function $f \in H(\mathbb{C})$ so that ${f(z), f(z + 1), f(z + 2), f(z + 3) \ldots}$ is dense in $H(\mathbb{C})$.
- G. R. MacLane (1952): There is a function $f \in H(\mathbb{C})$ so that ${f(z), f'(z), f''(z), f'''(z) ...}$ is dense in $H(\mathbb{C})$.

メスラメスラメー

Let $H(\mathbb{C}) = \{f : \mathbb{C} \to \mathbb{C} | f \text{ analytic}\} = \text{the set of all entire}$ functions $f : \mathbb{C} \to \mathbb{C}$.

Convergence: $\mathcal{F}_n \to f$ in $H(\mathbb{C})$ " means $\mathcal{F}_n \to f$ uniformly on compact subsets of C."

- Birkho (1929): There is a function $f \in H(\mathbb{C})$ so that ${f(z), f(z + 1), f(z + 2), f(z + 3) \ldots}$ is dense in $H(\mathbb{C})$.
- G. R. MacLane (1952): There is a function $f \in H(\mathbb{C})$ so that ${f(z), f'(z), f''(z), f'''(z) ...}$ is dense in $H(\mathbb{C})$.

Let $p \geq 1$, and $B : l^p \to l^p$ be the unilateral backward shift de ned by $B(a_0, a_1, a_2, \ldots) = (a_1, a_2, a_3, \ldots)$.

• Rolewicz (1969): If $t \in (1,\infty)$, then there exists a vector x in ℓ^p ℓ^p ℓ^p [s](#page-6-0)o that $\{x,(tB)x,(tB)^2x,(tB)^3x,\ldots\}$ $\{x,(tB)x,(tB)^2x,(tB)^3x,\ldots\}$ $\{x,(tB)x,(tB)^2x,(tB)^3x,\ldots\}$ i[s](#page-6-0) de[n](#page-87-0)s[e i](#page-0-0)n ℓ^p [.](#page-0-0)

 2990 GB 11

Hypercyclicity Criterion

Let X be a separable, in nite-dimensional Banach space over \mathbb{C} , and $B(X) = \{T : X \rightarrow X | T$ is bounded and linear $\}$.

Let X be a separable, in nite-dimensional Banach space over $\mathbb C$, and $B(X) = \{T : X \rightarrow X | T$ is bounded and linear.

De nition. A bounded linear operator T in $B(X)$ is hypercyclic if there is a vector x whose orbit orb $(T, x) = \{x, Tx, T^2x, T^3x, \ldots\}$ is dense in X . Such a vector x is called a *hypercyclic vector*.

ഹൈ

Let X be a separable, in nite-dimensional Banach space over $\mathbb C$, and $B(X) = \{T : X \rightarrow X | T$ is bounded and linear.

De nition. A bounded linear operator T in $B(X)$ is hypercyclic if there is a vector x whose orbit orb $(T, x) = \{x, Tx, T^2x, T^3x, \ldots\}$ is dense in X . Such a vector x is called a *hypercyclic vector*.

• Kitai (1982), Gethner and Shapiro (1987): $T : X \rightarrow X$ is hypercyclic if there is a dense set D of X and T has a right inverse S so that $T^n x \to 0$ and $S^n x \to 0$ for each vector $x \in D$.

つくへ

 $\overline{\text{orb}(T, x)} = \overline{\{x, Tx, T^2x, T^3x, ...\}}$ = the smallest closed invariant subset containing x.

 $\overline{\text{orb}(T, x)} = \overline{\{x, Tx, T^2x, T^3x, \ldots\}} =$ the smallest closed invariant subset containing x .

span orb $(\overline{T}, \overline{x}) = \overline{\{p(T)x : p \text{ is a polynomial}\}} =$ the smallest closed invariant subspace containing x.

 $\overline{\text{orb}(T, x)} = \overline{\{x, Tx, T^2x, T^3x, ...\}} = \text{the smallest closed invariant}$ subset containing x .

span orb $(\overline{T}, \overline{x}) = \overline{p(T)x : p}$ is a polynomial = the smallest closed invariant subspace containing x.

Invariant Subspace Problem (1920s, still open today): Must every bounded linear operator $T : H \rightarrow H$ on an in nite dimensional separable Hilbert space H have a nontrivial invariant subspace?

 $\overline{\text{orb}(T, x)} = \overline{\{x, Tx, T^2x, T^3x, ...\}} = \text{the smallest closed invariant}$ subset containing x .

span orb $(\overline{T}, \overline{x}) = \overline{p(T)x : p}$ is a polynomial = the smallest closed invariant subspace containing x.

Invariant Subspace Problem (1920s, still open today): Must every bounded linear operator $T : H \rightarrow H$ on an in nite dimensional separable Hilbert space H have a nontrivial invariant subspace?

En o (1987): Not if the space is ℓ^1 . That is, there is an operator T on ℓ^1 for which every nonzero vector x has the property that span orb $(\overline{T}, \overline{x}) = \ell^1$.

 $\overline{\text{orb}(T, x)} = \overline{\{x, Tx, T^2x, T^3x, ...\}} = \text{the smallest closed invariant}$ subset containing x .

span orb $(\overline{T}, \overline{x}) = \overline{\{p(T)x : p \text{ is a polynomial}\}} =$ the smallest closed invariant subspace containing x.

Invariant Subspace Problem (1920s, still open today): Must every bounded linear operator $T : H \rightarrow H$ on an in nite dimensional separable Hilbert space H have a nontrivial invariant subspace?

- En o (1987): Not if the space is ℓ^1 . That is, there is an operator T on ℓ^1 for which every nonzero vector x has the property that span orb $(\overline{T}, \overline{x}) = \ell^1$.
- Read (1989): There is an operator T on ℓ^1 with no nontrivial closed invariant subset. That is, every nonzero vector x has the property that $\overline{orb(T, x)} = \ell^1$.

If X is X q 424802 6f

XisXsX .

q 4248has 6f XXisX

If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take $X = \mathbb{C}^n$. The adjoint $T^* : \mathbb{C}^n \to \mathbb{C}^n$ has an eigenvalue $\alpha \in \mathbb{C}$. Suppose $T^*y = \alpha y$.

化重复 化重变

If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take $X = \mathbb{C}^n$. The adjoint $T^* : \mathbb{C}^n \to \mathbb{C}^n$ has an eigenvalue $\alpha \in \mathbb{C}$. Suppose $T^*y = \alpha y$. Then for any vector $x \in \mathbb{C}^n$,

$$
\langle T^{n}x, y \rangle = \langle x, T^{*n}y \rangle = \langle x, \alpha^{n}y \rangle = \alpha^{n} \langle x, y \rangle,
$$

which cannot be dense in \mathbb{C} . \Box

If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take $X = \mathbb{C}^n$. The adjoint $T^* : \mathbb{C}^n \to \mathbb{C}^n$ has an eigenvalue $\alpha \in \mathbb{C}$. Suppose $T^*y = \alpha y$. Then for any vector $x \in \mathbb{C}^n$,

$$
\langle T^{n}x, y \rangle = \langle x, T^{*n}y \rangle = \langle x, \alpha^{n}y \rangle = \alpha^{n} \langle x, y \rangle,
$$

which cannot be dense in \mathbb{C} . \Box

Back to the case when X is in nite dimensional.

If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take $X = \mathbb{C}^n$. The adjoint $T^* : \mathbb{C}^n \to \mathbb{C}^n$ has an eigenvalue $\alpha \in \mathbb{C}$. Suppose $T^*y = \alpha y$. Then for any vector $x \in \mathbb{C}^n$,

$$
\langle T^{n}x, y \rangle = \langle x, T^{*n}y \rangle = \langle x, \alpha^{n}y \rangle = \alpha^{n} \langle x, y \rangle,
$$

which cannot be dense in \mathbb{C} . \Box

Back to the case when X is in nite dimensional.

If $F: X \to X$ has nite rank (that is, dim ran $F < \infty$), then $I + F$ is not hypercyclic.

If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take $X = \mathbb{C}^n$. The adjoint $T^* : \mathbb{C}^n \to \mathbb{C}^n$ has an eigenvalue $\alpha \in \mathbb{C}$. Suppose $T^*y = \alpha y$. Then for any vector $x \in \mathbb{C}^n$,

$$
\langle T^{n}x, y \rangle = \langle x, T^{*n}y \rangle = \langle x, \alpha^{n}y \rangle = \alpha^{n} \langle x, y \rangle,
$$

which cannot be dense in \mathbb{C} . \Box

Back to the case when X is in nite dimensional.

If $F: X \to X$ has nite rank (that is, dim ran $F < \infty$), then $I + F$ is not hypercyclic.

If $T : X \to X$ is compact, then T is not hypercyclic.

If X is nite dimensional, no operator T on X is hypercyclic.

Proof: Take $X = \mathbb{C}^n$. The adjoint $T^* : \mathbb{C}^n \to \mathbb{C}^n$ has an eigenvalue $\alpha \in \mathbb{C}$. Suppose $T^*y = \alpha y$. Then for any vector $x \in \mathbb{C}^n$,

$$
\langle T^{n}x, y \rangle = \langle x, T^{*n}y \rangle = \langle x, \alpha^{n}y \rangle = \alpha^{n} \langle x, y \rangle,
$$

which cannot be dense in \mathbb{C} . \Box

Back to the case when X is in nite dimensional.

If $F: X \to X$ has nite rank (that is, dim ran $F < \infty$), then $I + F$ is not hypercyclic.

If $T: X \rightarrow X$ is compact, then T is not hypercyclic.

If X is a Hilbert space, no normal operator is hypercyclic.

Suppose $\{x_j:j\ge 1\}$ is a countable dense subset of X , and x is a vector in X . For x to be a hypercyclic vector, the following must hold:

For all x_i and for all $\epsilon > 0$, there is a integer *n* such that $\|T^n x - x_j\| < \epsilon;$

Suppose $\{x_j:j\ge 1\}$ is a countable dense subset of X , and x is a vector in X . For x to be a hypercyclic vector, the following must hold:

For all x_i and for all $\epsilon > 0$, there is a integer *n* such that $\|T^n x - x_j\| < \epsilon;$

Equivalently, $x \in T^{-n}B(x_j, \epsilon)$.

Suppose $\{x_j:j\ge 1\}$ is a countable dense subset of X , and x is a vector in X . For x to be a hypercyclic vector, the following must hold:

For all x_i and for all $\epsilon > 0$, there is a integer *n* such that $\|T^n x - x_j\| < \epsilon;$

Equivalently, $x \in T^{-n}B(x_j, \epsilon)$.

Let $\mathcal{HC}(T) = \{x \in X | x \text{ is a hypercyclic vector for } T\}.$

Suppose $\{x_j:j\ge 1\}$ is a countable dense subset of X , and x is a vector in X . For x to be a hypercyclic vector, the following must hold:

KORK ERKERK EI VAN

For all x_i and for all $\epsilon > 0$, there is a integer *n* such that $\|T^n x - x_j\| < \epsilon;$

```
Equivalently, x \in T^{-n}B(x_j, \epsilon).
```

```
Let HC(T) SHC
```
A Basic Zero-One Law for Hypercyclic Vectors

• Kitai (1982): For any operator T in $B(X)$, either $H\mathcal{C}(\mathcal{T})$ is either ϕ or a dense G set.

化重复 化重变

 Ω

A Basic Zero-One Law for Hypercyclic Vectors

• Kitai (1982): For any operator T in $B(X)$, either $H\mathcal{C}(\mathcal{T})$ is either ϕ or a dense G set.

Baire Category Theorem \implies

If $\{T_n : X \to X | n \ge 1\}$ is a countable collection of hypercyclic operators, then their set of common hypercyclic vectors

> $\bigcap_{i=1}^{\infty}$ $n=1$ $H\mathcal{C}(\mathcal{T}_n)$

is a dense G set.

A Basic Zero-One Law for Hypercyclic Vectors

• Kitai (1982): For any operator T in $B(X)$, either $HC(T)$ is either ϕ or a dense G set.

Baire Category Theorem \implies

If $\{T_n : X \to X | n \ge 1\}$ is a countable collection of hypercyclic operators, then their set of common hypercyclic vectors

$$
\bigcap_{n=1}^{\infty} \mathcal{HC}(T_n)
$$

is a dense G set.

• Salas (1999): If B is the unilateral backward shift, is the set of common hypercyclic vectors

$$
\bigcap_{t>1} \mathcal{HC}(tB) \neq \phi?
$$

つくへ

Existence of a G_{δ} Set of Common Hypercyclic Vectors

Abakumov & Gordon (2003): \bigcap $\mathcal{HC}(tB)$ = the set of $1 < t$ common hypercyclic vectors for tB is a dense G set.

Existence of a G_{δ} Set of Common Hypercyclic Vectors

- Abakumov & Gordon (2003): \bigcap $\mathcal{HC}(tB)$ = the set of $1 < t$ common hypercyclic vectors for tB is a dense G set.
- Costakis & Sambarino (2004): Reproved the above result with a simpler proof by introducing a succient condition for common hypercyclicity, and showed other applications.

 Ω

Existence of a G_{δ} Set of Common Hypercyclic Vectors

- Abakumov & Gordon (2003): \bigcap $\mathcal{HC}(tB)$ = the set of $1 < t$ common hypercyclic vectors for tB is a dense G set.
- Costakis & Sambarino (2004): Reproved the above result with

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q Q

 $T : \ell^p \to \ell^p$ is said to be a unilateral weighted backward shift if there is a bounded positive weight sequence $\{w_j: j\geq 1\}$ such that

 $T(a_0, a_1, a_2, \ldots) = (w_1 a_1, w_2 a_2, w_3 a_3, \ldots).$

- 4 重 8 34 重 8

 $T : \ell^p \to \ell^p$ is said to be a unilateral weighted backward shift if there is a bounded positive weight sequence $\{w_j: j\geq 1\}$ such that

$$
T(a_0, a_1, a_2,...) = (w_1a_1, w_2a_2, w_3a_3,...).
$$

• Salas (1995): A unilateral weighted backward shift T is hypercyclic if and only if $\sup\{w_1w_2\cdots w_n : n \geq 1\} = \infty$.

つへい

 $T : \ell^p \to \ell^p$ is said to be a unilateral weighted backward shift if there is a bounded positive weight sequence $\{w_j: j\geq 1\}$ such that

$$
T(a_0, a_1, a_2,...) = (w_1a_1, w_2a_2, w_3a_3,...).
$$

- Salas (1995): A unilateral weighted backward shift T is hypercyclic if and only if $\sup\{w_1w_2\cdots w_n : n \geq 1\} = \infty$.
- Grosse-Erdmann (2000): Generalizations to Frechet spaces.

 $T : \ell^p \to \ell^p$ is a bilateral weighted backward shift if there is a bounded positive weight sequence $\{w_j: j \in \mathbb{Z}\}$ such that

$$
T(\ldots, a_{-1}, \overbrace{a_0}^{zeroth}, a_1, \ldots) = (\ldots, w_{-1}a_{-1}, w_0a_0, \overbrace{w_1a_1}^{zeroth}, w_2a_2, \ldots).
$$

4 重 下

 $T : \ell^p \to \ell^p$ is a bilateral weighted backward shift if there is a bounded positive weight sequence $\{w_j: j \in \mathbb{Z}\}$ such that

$$
T(\ldots, a_{-1}, \overbrace{a_0}^{\text{zeroth}}, a_1, \ldots) = (\ldots, w_{-1}a_{-1}, w_0a_0, \overbrace{w_1a_1}^{\text{zeroth}}, w_2a_2, \ldots).
$$

• Salas (1995): A bilateral weighted shift T is hypercyclic if and only if for any $\epsilon > 0$, and $q \in \mathbb{N}$, there is an arbitrarily large n such that whenever $|k| \leq q$,

$$
\prod_{j=1}^n w_{k+j} > \frac{1}{\epsilon} \quad \text{and} \quad \prod_{j=0}^{n-1} w_{k-j} < \epsilon.
$$

つへい
with Sanders (2009): Between any two hypercyclic unilateral weighted backward shifts, there is a path of such operators with a dense G set of common hypercyclic vectors. Also, there is a path of such operators with no common hypercyclic vectors.

- with Sanders (2009): Between any two hypercyclic unilateral weighted backward shifts, there is a path of such operators with a dense G set of common hypercyclic vectors. Also, there is a path of such operators with no common hypercyclic vectors.
- Corollary: The hypercyclic unilateral weighted backward shifts form a path-connected subset in the operator algebra.

つくへ

- with Sanders (2009): Between any two hypercyclic unilateral weighted backward shifts, there is a path of such operators with a dense G set of common hypercyclic vectors. Also, there is a path of such operators with no common hypercyclic vectors.
- Corollary: The hypercyclic unilateral weighted backward shifts form a path-connected subset in the operator algebra.
- The same holds true for bilateral weighted shifts.

 Ω

- with Sanders (2009): Between any two hypercyclic unilateral weighted backward shifts, there is a path of such operators with a dense G set of common hypercyclic vectors. Also, there is a path of such operators with no common hypercyclic vectors.
- Corollary: The hypercyclic unilateral weighted backward shifts form a path-connected subset in the operator algebra.
- The same holds true for bilateral weighted shifts.

Natural Question: Can we have \a lot" of operators in a path and yet their common hypercyclic vectors still form a dense G subset? What do we mean by \a lot"?

Existence of Hypercyclic Operators

• Ansari (1997) : For every separable, in nite dimensional Banach space X , there is a hypercyclic operator T in $B(X)$.

Existence of Hypercyclic Operators

• Ansari (1997) : For every separable, in nite dimensional Banach space X, there is a hypercyclic operator T in $B(X)$.

De nition. A vector $x \in X$ is said to be a *periodic point* of an operator T in $B(X)$ if there is a positive integer n such that $T^n x = x.$

De nition. An operator on X is said to be *chaotic* if and only if it is hypercyclic and has a dense set of periodic points.

ഹൈ

• Ansari (1997) : For every separable, in nite dimensional Banach space X, there is a hypercyclic operator T in $B(X)$.

De nition. A vector $x \in X$ is said to be a *periodic point* of an operator T in $B(X)$ if there is a positive integer n such that $T^n x = x.$

De nition. An operator on X is said to be *chaotic* if and only if it is hypercyclic and has a dense set of periodic points.

• Bonet & Mart nez-Gimenez & Peris (2001): There is a separable, in nite dimensional Banach space which admits no chaotic operator.

ഹൈ

A Zero-One Law for Chaotic Operators

 $SOT =$ Strong Operator Topology of the operator algebra $B(X)$.

 \bullet (2002): For a separable, in nite dimensional Hilbert space H, the hypercyclic operators on H are SOT-dense in $B(H)$.

A Zero-One Law for Chaotic Operators

 $SOT =$ Strong Operator Topology of the operator algebra $B(X)$.

- \bullet (2002): For a separable, in nite dimensional Hilbert space H, the hypercyclic operators on H are SOT-dense in $B(H)$.
- with Bes (2003): The set of chaotic operators on a separable, in nite dimensional Banach space X is either empty or SOT-dense in $B(X)$.

A Zero-One Law for Chaotic Operators

 $SOT =$ Strong Operator Topology of the operator algebra $B(X)$.

- \bullet (2002): For a separable, in nite dimensional Hilbert space H, the hypercyclic operators on H are SOT-dense in $B(H)$.
- with Bes (2003): The set of chaotic operators on a separable, in nite dimensional Banach space X is either empty or SOT-dense in $B(X)$.

Indeed, if $T \in B(X)$ is hypercyclic, then its conjugate class, or similarity orbit, $\{A^{-1}TA : A$ invertible on $X\}$ is SOT-dense in $B(X)$.

つくへ

A Double Density Theorem

Let H be separable, in nite dimensional Hilbert space over $\mathbb C$.

• with Sanders (2011): There is a path of chaotic operators in $B(H)$ that is SOT-dense in $B(H)$, and each operator on the path shares the exact same set G of common hypercyclic vectors.

A Double Density Theorem

Let H be separable, in nite dimensional Hilbert space over $\mathbb C$.

- with Sanders (2011): There is a path of chaotic operators in $B(H)$ that is SOT-dense in $B(H)$, and each operator on the path shares the exact same set G of common hypercyclic vectors.
- Corollary: The path can be taken so that each operator along the path satises the hypercyclicity criterion.

A Double Density Theorem

Let H be separable, in nite dimensional Hilbert space over $\mathbb C$.

- with Sanders (2011): There is a path of chaotic operators in $B(H)$ that is SOT-dense in $B(H)$, and each operator on the path shares the exact same set G of common hypercyclic vectors.
- Corollary: The path can be taken so that each operator along the path satises the hypercyclicity criterion.
- Corollary: The hypercyclic operators in $B(H)$ are SOT-connected.
- Corollary: The hypercyclic operators T in $B(H)$ with $G \subset HCl(T)$ are SOT-connected.

For an operator $T : X \to X$ on a Banach space X, we let $\mathcal{S}(\mathcal{T}) \;=\; \{A^{-1}\,\mathcal{T} A\,|\,A\; \text{invertible}\}$ be the similarity orbit of $\mathcal{T}.$

∢ 重 ≯

 Ω

For an operator $T: X \rightarrow X$ on a Banach space X, we let $\mathcal{S}(\mathcal{T}) \;=\; \{A^{-1}\,\mathcal{T} A\,|\,A\; \text{invertible}\}$ be the similarity orbit of $\mathcal{T}.$

• with Sanders (2011): $S(T)$ contains a path of operators which is SOT-dense in $B(X)$ and for which the set of common hypercyclic vectors for the whole path is a dense G set.

For an operator $T: X \rightarrow X$ on a Banach space X, we let $\mathcal{S}(\mathcal{T}) \;=\; \{A^{-1}\,\mathcal{T} A\,|\,A\; \text{invertible}\}$ be the similarity orbit of $\mathcal{T}.$

• with Sanders (2011): $S(T)$ contains a path of operators which is SOT-dense in $B(X)$ and for which the set of common hypercyclic vectors for the whole path is a dense G set.

Observations of some zero-one phenomenon:

For an operator $T: X \rightarrow X$ on a Banach space X, we let $\mathcal{S}(\mathcal{T}) \;=\; \{A^{-1}\,\mathcal{T} A\,|\,A\; \text{invertible}\}$ be the similarity orbit of $\mathcal{T}.$

• with Sanders (2011): $S(T)$ contains a path of operators which is SOT-dense in $B(X)$ and for which the set of common hypercyclic vectors for the whole path is a dense G set.

Observations of some zero-one phenomenon:

(1) If $HC(T) = X \setminus \{0\}$, the set of common hypercyclic vectors for $S(T)$ is also $X \setminus \{0\}$.

(2) If $HC(T) \neq X \setminus \{0\}$, the set of common hypercyclic vectors for $S(T)$ is empty.

医阿雷氏阿雷氏

For an operator T on a Hilbert space H , we let $U(T) = \{ \infty \}$ $\in \in \infty$ \cup $\infty \in \infty$ \in \in

イロト イ母 トイミト イミト ニヨー りんぴ

For an operator T on a Hilbert space H , we let $\mathcal{U}(\mathcal{T})=\{U^{-1}\mathcal{T}U:U$ unitary}, the unitary orbit of $\mathcal{T}.$

{unitary operators on H} path connected \implies $U(T)$ path connected.

医单侧 医单侧

 Ω

For an operator T on a Hilbert space H , we let $\mathcal{U}(\mathcal{T})=\{U^{-1}\mathcal{T}U:U$ unitary}, the unitary orbit of $\mathcal{T}.$

{unitary operators on H} path connected \implies $\mathcal{U}(T)$ path connected.

Every operator in $U(T)$ has the same norm as T. So $U(T)$ does not contain a path that is SOT-dense in $B(H)$.

医单侧 医单侧

For an operator T on a Hilbert space H , we let $\mathcal{U}(\mathcal{T})=\{U^{-1}\mathcal{T}U:U$ unitary}, the unitary orbit of $\mathcal{T}.$

{unitary operators on H} path connected \implies $U(T)$ path connected.

Every operator in $U(T)$ has the same norm as T. So $U(T)$ does not contain a path that is SOT-dense in $B(H)$.

• with Sanders (2012): If $T \in B(H)$ be hypercyclic, then $U(T)$ contains a path ${\mathcal P}$ of operators so that $\overline{\mathcal P}^{SOT}$ contains $\mathcal U(\mathcal T)$ and the common hypercyclic vectors for $\mathcal P$ is a dense G set.

つくへ

• Bourdon & Feldman (2003): If an orbit orb (T, x) is somewhere dense in a Banach space X then the orbit orb (T, x) is everywhere dense.

- Bourdon & Feldman (2003): If an orbit orb (T, x) is somewhere dense in a Banach space X then the orbit orb (T, x) is everywhere dense.
- with Seceleanu (2012): Let $T : \ell^p \to \ell^p$ be a unilateral weighted backward shift. The following are equivalent:
- (A) T is hypercyclic.

- Bourdon & Feldman (2003): If an orbit orb (T, x) is somewhere dense in a Banach space X then the orbit orb (T, x) is everywhere dense.
- with Seceleanu (2012): Let $T : \ell^p \to \ell^p$ be a unilateral weighted backward shift. The following are equivalent:
- (A) T is hypercyclic.
- (B) There is a vector whose orbit has a nonzero limit point.

- Bourdon & Feldman (2003): If an orbit orb (T, x) is somewhere dense in a Banach space X then the orbit orb (T, x) is everywhere dense.
- with Seceleanu (2012): Let $T : \ell^p \to \ell^p$ be a unilateral weighted backward shift. The following are equivalent:
- (A) T is hypercyclic.
- (B) There is a vector whose orbit has a nonzero limit point.
- (C) There is a vector whose orbit has a nonzero weak limit point.

- Bourdon & Feldman (2003): If an orbit orb (T, x) is somewhere dense in a Banach space X then the orbit orb (T, x) is everywhere dense.
- with Seceleanu (2012): Let $T : \ell^p \to \ell^p$ be a unilateral weighted backward shift. The following are equivalent:
- (A) T is hypercyclic.
- (B) There is a vector whose orbit has a nonzero limit point.
- (C) There is a vector whose orbit has a nonzero weak limit point.
- (D) There is a vector whose orbit has in nitely many members contained in an open ball whose closure avoids the origin.

- Bourdon & Feldman (2003): If an orbit orb (T, x) is somewhere dense in a Banach space X then the orbit orb (T, x) is everywhere dense.
- with Seceleanu (2012): Let $T : \ell^p \to \ell^p$ be a unilateral weighted backward shift. The following are equivalent:
- (A) T is hypercyclic.
- (B) There is a vector whose orbit has a nonzero limit point.
- (C) There is a vector whose orbit has a nonzero weak limit point. (D)

- Bourdon & Feldman (2003): If an orbit orb (T, x) is somewhere dense in a Banach space X then the orbit orb (T, x) is everywhere dense.
- with Seceleanu (2012): Let $T : \ell^p \to \ell^p$ be a unilateral weighted backward shift. The following are equivalent:
- (A) T is hypercyclic.
- (B) There is a vector whose orbit has a nonzero limit point.
- (C) There is a vector whose orbit has a nonzero weak limit point.
- (D) There is a vector whose orbit has in nitely many members contained in an open ball whose closure avoids the origin.

Corollary: T is not hypercyclic i every orb $(T, x) \cup \{0\}$ is closed. Remark: (A), (B), (D) are equivalent for bilateral weighted shifts.

- Bourdon & Feldman (2003): If an orbit orb (T, x) is somewhere dense in a Banach space X then the orbit orb (T, x) is everywhere dense.
- with Seceleanu (2012): Let $T : \ell^p \to \ell^p$ be a unilateral weighted backward shift. The following are equivalent:
- (A) T is hypercyclic.
- (B) There is a vector whose orbit has a nonzero limit point.
- (C) There is a vector whose orbit has a nonzero weak limit point.
- (D) There is a vector whose orbit has in nitely many members contained in an open ball whose closure avoids the origin.

Corollary: T is not hypercyclic i every orb $(T, x) \cup \{0\}$ is closed. Remark: (A), (B), (D) are equivalent for bilateral weighted shifts.

• with Sanders (2004): A unilateral weighted backward shift is hypercyclic if and only if it is weakly hypercyclic. But, there is a bilateral weighted shift that is weakly hypercyclic but not hypercyclic. モミメー

 QQ

A Remark on Theorem

If orb(T, x) has a nonzero limit point, we can only conclude T is hypercyclic but we cannot conclude that x is a hypercyclic vector, and in fact not even a cyclic vector.

A vector x is a cyclic vector for T, if span orb (T, x) is dense in X.

If orb(T, x) has a nonzero limit point, we can only conclude T is hypercyclic but we cannot conclude that x is a hypercyclic vector, and in fact not even a cyclic vector.

A vector x is a cyclic vector for T, if span orb (T, x) is dense in X. Let (e_n) be the canonical basis of ℓ^p .

• with Seceleanu (preprint, 2013): The vector x is a cyclic vector for T , if

(1) the weight $(w_j)_{j=1}^{\infty}$ of T is bounded below, and

(2) orb(T, x) has a nonzero limit point f given by $f = a_0 e_o + \cdots + a_n e_n$ (nite sum) for some scalars a_j .

If orb(T, x) has a nonzero limit point, we can only conclude T is hypercyclic but we cannot conclude that x is a hypercyclic vector, and in fact not even a cyclic vector.

A vector x is a cyclic vector for T, if span orb (T, x) is dense in X. Let (e_n) be the canonical basis of ℓ^p .

• with Seceleanu (preprint, 2013): The vector x is a cyclic vector for T , if

(1) the weight $(w_j)_{j=1}^{\infty}$ of T is bounded below, and

(2) orb(T, x) has a nonzero limit point f given by $f = a_0 e_o + \cdots + a_n e_n$ (nite sum) for some scalars a_j .

There are examples to show both (1) and (2) are needed for x to be a cyclic vector.

Proof of $\lambda(B) \implies (A)$ "

Suppose there exist a vector $x = (x_0, x_1, x_2, ...) \in \ell^p$ and a non-zero vector $f = (f_0, f_1, f_2, ...) \in \ell^p$ such that f is a limit point of the orbit $Orb(T, x)$.

化重新润滑剂

 Ω

Proof of \setminus (B) \implies (A)"

Suppose there exist a vector $x = (x_0, x_1, x_2, ...) \in \ell^p$ and a non-zero vector $f = (f_0, f_1, f_2, ...) \in \ell^p$ such that f is a limit point of the orbit $Orb(T, x)$.

Since $f_i \neq 0$ for some $j \geq 0$, we assume without loss of generality that $f_0 \neq 0$. Hence there exist an increasing sequence ${n_k : k \geq 1} \subset \mathbb{N}$ and an integer $N > 0$ such that

$$
\|T^{n_k}x - f\| < \frac{1}{2^k} < \frac{|f_0|}{2},
$$

for all $k > N$. Then

$$
T^{n_k}x = T^{n_k}(x_0, x_1, x_2, \ldots) = (w_1 \cdots w_{n_k}x_{n_k}, \ldots).
$$

Proof of \setminus (B) \implies (A)"

Suppose there exist a vector $x = (x_0, x_1, x_2, ...) \in \ell^p$ and a non-zero vector $f = (f_0, f_1, f_2, ...) \in \ell^p$ such that f is a limit point of the orbit $Orb(T, x)$.

Since $f_i \neq 0$ for some $j \geq 0$, we assume without loss of generality that $f_0 \neq 0$. Hence there exist an increasing sequence ${n_k : k \geq 1} \subset \mathbb{N}$ and an integer $N > 0$ such that

$$
\|T^{n_k}x - f\| < \frac{1}{2^k} < \frac{|f_0|}{2},
$$

for all $k > N$. Then

$$
T^{n_k}x = T^{n_k}(x_0, x_1, x_2, \ldots) = (w_1 \cdots w_{n_k}x_{n_k}, \ldots).
$$

Hence $||T^{n_k}x - f|| \geq |w_1 \cdots w_{n_k}x_{n_k} - f_0|$. So there exists a sequence $\{n_k : k > 1\}$ such that

$$
|w_1\cdots w_{n_k}x_{n_k}-f_0|<|f_0|/2,
$$

for all $k > N$.

医阿雷氏阿雷氏征

 200

\setminus (B) \implies (A)" Completed

Thus $|f_0|/2 < |w_1 \cdots w_{n_k} x_{n_k}|$ and so $\frac{|f_0|}{2(w_1 \cdots w_{n_k})} < |x_{n_k}|$ for all $k \geq N$. Hence we get that

$$
\frac{|f_0|^p}{2^p(w_1\cdots w_{n_k})^p} < |x_{n_k}|^p, \text{ for all } k \geq N.
$$

Now since $x \in \ell^p$ we have

$$
\frac{|f_0|^p}{2^p}\sum_{k=N}^{\infty}\frac{1}{(w_1\cdots w_{n_k})^p}\leq \sum_{k=N}^{\infty}|x_{n_k}|^p\leq ||x||^p<\infty.
$$

おぼ 産お す唐おし

 Ω
\setminus (B) \implies (A)" Completed

Thus $|f_0|/2 < |w_1 \cdots w_{n_k} x_{n_k}|$ and so $\frac{|f_0|}{2(w_1 \cdots w_{n_k})} < |x_{n_k}|$ for all $k \geq N$. Hence we get that

$$
\frac{|f_0|^p}{2^p(w_1\cdots w_{n_k})^p} < |x_{n_k}|^p, \text{ for all } k \geq N.
$$

Now since $x \in \ell^p$ we have

$$
\frac{|f_0|^p}{2^p}\sum_{k=N}^{\infty}\frac{1}{(w_1\cdots w_{n_k})^p}\leq \sum_{k=N}^{\infty}|x_{n_k}|^p\leq ||x||^p<\infty.
$$

It follows that $\frac{1}{(w_1 \dots w_{n_k})^p} \to 0$. That is, there exists an increasing sequence $\{n_k\}$ such that $w_1 \cdots w_{n_k} \to \infty$ as $k \to \infty$.

つくい

$\lambda(B) \implies (A)$ " Completed

Thus $|f_0|/2 < |w_1 \cdots w_{n_k} x_{n_k}|$ and so $\frac{|f_0|}{2(w_1 \cdots w_{n_k})} < |x_{n_k}|$ for all $k \geq N$. Hence we get that

$$
\frac{|f_0|^p}{2^p(w_1\cdots w_{n_k})^p} < |x_{n_k}|^p, \text{ for all } k \geq N.
$$

K ロ X K 日 X K 포 X X 포 X X B X X Q Q Q

Now since $x \in \ell^p$ we have

$$
\frac{|f_0|^p}{2^p}\sum_{k=N}^{\infty} \qquad \mathbf{j} \mathbf{l}
$$

Recall: A Zero-One Law for Orbital Limit Points

- with Seceleanu (2012): Let $T : \ell^p \to \ell^p$ be a unilateral weighted backward shift. The following are equivalent:
- (A) T is hypercyclic.
- (B) There is a vector whose orbit has a nonzero limit point.
- (C) There is a vector whose orbit has a nonzero weak limit point.
- (D) There is a vector whose orbit has in nitely many members contained in an open ball whose closure avoids the origin.

つくい

Proof of \setminus (C) \implies (B)"

Let $x = (x_0, x_1, x_2, ...) \in \ell^p$ be a vector whose $Orb(T, x)$ has $f = (f_0, f_1, f_2, \ldots) \in \ell^p$ as a non-zero <u>weak</u> limit point, with f_k

Proof of \setminus (C) \implies (B)"

Let $x = (x_0, x_1, x_2, ...) \in \ell^p$ be a vector whose $Orb(T, x)$ has $f = (f_0, f_1, f_2, \ldots) \in \ell^p$ as a non-zero <u>weak</u> limit point, with $f_k \neq 0$.

Considering the weakly open sets that contain f, we get that for all $j\geq 1$ there exists an $n_j\geq 1$ such that $|\langle T^{n_j}x-f , e_k\rangle|<\frac{1}{k_j}$ $\frac{1}{j}$.

That is
$$
|w_{k+1} \cdots w_{k+n_j} x_{k+n_j} - f_k| < \frac{1}{j}
$$
, for all $j \geq 1$.

Next, we inductively pick a subsequence $\{\eta_{j_k}\}$ of $\{\eta_j\}$ as follows: 1. Let $j_1 = 1$.

2. Once we have chosen j_m we pick $j_{m+1} > j_m$ such that

$$
k + n_{j_m} < n_{j_{m+1}}
$$
 and $\sum_{i=j_{m+1}}^{\infty} |x_{k+n_i}|^p \le \frac{1}{j_m \cdot ||T||^{p \cdot n_{j_m}}}.$

Thus we can assume, by taking a subsequence if necessary, that

$$
\{n_j\}
$$
 satis es $k + n_j < n_{j+1}$ and $\sum_{i=j+1}^{\infty} |x_{k+n_i}|^p \le \frac{1}{j \cdot ||T||^{p \cdot n_j}}$.

$\overline{\setminus}(C) \implies (B)'$ Continued

Let
$$
y = \sum_{i=1}^{\infty} x_{k+n_i} \cdot e_{k+n_i}
$$
. Clearly y is in ℓ^p , because x is.
\nThen $T^{n_m}y = \sum_{i=1}^{\infty} x_{k+n_i} \cdot T^{n_m}e_{k+n_i}$. But $k + n_i < n_{i+1}$ for all $i \ge 1$
\nand so $k + n_i < n_m$ for all $i < m$. Thus since T is a unilateral
\nbackward shift we conclude that $T^{n_m}y = \sum_{i=m}^{\infty} x_{k+n_i} \cdot T^{n_m}e_{k+n_i}$.

メロメ メ都 メメ きょく ミメー

活

\setminus (C) \implies (B)" Continued

Let $y = \sum_{n=1}^{\infty}$ $i=1$ $x_{k+n_i} \cdot e_{k+n_i}$. Clearly y is in ℓ^p , because x is. Then $T^{n_m}y = \sum_{m=1}^{\infty}$ $i=1$ $x_{k+n_i} \cdot T^{n_m} e_{k+n_i}$. But $k+n_i < n_{i+1}$ for all $i \geq 1$ and so $k + n_i < n_m$ for all $i < m$. Thus since T is a unilateral backward shift we conclude that $T^{n_m}y = \sum_{k=n_i}^{\infty} x_{k+n_i} \cdot T^{n_m}e_{k+n_i}$. Furthermore, since the vectors $T^{n_m}e_{k+n_i}$ and $T^{n_m}e_{k+n_j}$ have disjoint support for $i \neq j$, that is $\widehat{T^{n_m}e_{k+n_i}}(s) = 0$ whenever $\widehat{T^{n_m}e_{k+n_j}(s)} \neq 0$, we have that

$$
\|T^{n_m}y - f_k e_k\|
$$

\n
$$
\leq \| (w_{k+1} \cdots w_{k+n_m}x_{k+n_m} - f_k) \cdot e_k \| + \left\| \sum_{i=m+1}^{\infty} x_{k+n_i} \cdot T^{n_m} e_{k+n_i} \right\|
$$

\setminus (C) \implies (B)" Completed

Thus,

$$
||T^{n_m}y - f_k e_k||
$$

\n
$$
\leq |W_{k+1} \cdots W_{k+n_m}x_{k+n_m} - f_k| + \left[\sum_{i=m+1}^{\infty} |x_{k+n_i}|^p \cdot ||T^{n_m}e_{k+n_i}||^p\right]^{1=p}
$$

\n
$$
\leq \frac{1}{m} + \left[\sum_{i=m+1}^{\infty} |x_{k+n_i}|^p \cdot ||T||^{p \cdot n_m}\right]^{1=p} \leq \frac{1}{m} + \frac{1}{\sqrt[p]{m}} \to 0 \text{ as } m \to \infty.
$$

メロメ メ御 メメ きょく きょう

目

Thus,

$$
||T^{n_m}y - f_k e_k||
$$

\n
$$
\leq |w_{k+1} \cdots w_{k+n_m}x_{k+n_m} - f_k| + \left[\sum_{i=m+1}^{\infty} |x_{k+n_i}|^p \cdot ||T^{n_m} e_{k+n_i}||^p\right]^{1=p}
$$

\n
$$
\leq \frac{1}{m} + \left[\sum_{i=m+1}^{\infty} |x_{k+n_i}|^p \cdot ||T||^{p \cdot n_m}\right]^{1=p} \leq \frac{1}{m} + \frac{1}{\sqrt[p]{m}} \to 0 \text{ as } m \to \infty.
$$

Thus $T^{n_m}y \to f_k e_k$ in norm as $m \to \infty$, where $f_k e_k \neq 0$ in ℓ^p , and hence Orb(T , y) has a non-zero limit point. \Box

医间周的 间医的

Let be a region in $\mathbb C$ and $H^\infty(-)$ be the algebra of all bounded analytic functions on .

Let $A^2() = \{f : \rightarrow \mathbb{C} \mid f \text{ analytic}, \text{ and } \int |f|^2 dA < \infty \}$ be the Bergman space.

If $\varphi \in H^{\infty}(\)$, then we de ne $M_{\perp} : A^2(\) \to A^2(\)$ by $M_{\perp} f = \varphi f$.

- 4 重 8 - 4 重 8

Let be a region in $\mathbb C$ and $H^\infty(-)$ be the algebra of all bounded analytic functions on .

Let $A^2() = \{f : \rightarrow \mathbb{C} \mid f \text{ analytic}, \text{ and } \int |f|^2 dA < \infty \}$ be the Bergman space.

If $\varphi \in H^{\infty}(\)$, then we de ne $M_{\perp} : A^2(\) \to A^2(\)$ by $M_{\perp} f = \varphi f$.

Godefroy & Shapiro (1991): The adjoint operator $M^* : A^2() \rightarrow A^2()$ is hypercyclic if and only if $\varphi()$ intersects the unit circle.

御 ▶ すき ▶ すき ▶

A Zero-One Law for Adjoint Multiplication Operators

Let $\varphi \in H^{\infty}(\)$ be a nonconstant function, and $M_{\cdot}: A^2(\cdot) \rightarrow A^2(\cdot).$

• with Seceleanu (2012): The following are equivalent. (A) M[∗] ' is hypercyclic.

A Zero-One Law for Adjoint Multiplication Operators

Let $\varphi \in H^{\infty}(\)$ be a nonconstant function, and $M_{\cdot}: A^2(\cdot) \rightarrow A^2(\cdot).$

• with Seceleanu (2012): The following are equivalent. (A) M[∗] ' is hypercyclic.

(B) M[∗] ' has an orbit with a nonzero limit point.

つくい

A Zero-One Law for Adjoint Multiplication Operators

Let $\varphi \in H^{\infty}(\)$ be a nonconstant function, and $M_{\cdot}: A^2(\cdot) \rightarrow A^2(\cdot).$

• with Seceleanu (2012): The following are equivalent. (A) M[∗] ' is hypercyclic.

(B) M[∗] ' has an orbit with a nonzero limit point.

(C) M^{*} has an orbit which has in nitely many members contained in an open ball whose closure avoids the origin.

What about the Hardy Space?

What about the Hardy Space?

Let
$$
\mathbb D
$$
 be the open unit disk, and let $H^2 = \left\{ f : \mathbb D \to \mathbb D \mid f(z) = \sum_{n=0}^{\infty} a_n z^n \text{ analytic and } \sum_{n=0}^{\infty} |a_n|^2 < \infty \right\}$ be the Hardy space.

• with Seceleanu (2012): The result for the Bergman space holds true for the Hardy space.

Let $\varphi : \mathbb{D} \to \mathbb{D}$ be an analytic map.

De ne C_1 : $H^2 \rightarrow H^2$ by $C_1 f = f \circ \varphi$.

• with Seceleanu (2012): If $\alpha > 0$ is an irrational number, and $\varphi(z) = e^{2i}$ z, then C_i has an orbit with the identity function $\psi(z) \equiv z$ as a nonzero limit point, but C is not hypercyclic.